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1. Introduction

Bhabha scattering, e+e− → e+e−, is one of the basic processes at electron-positron collid-

ers. It has sufficiently large cross-section to be employed as a reference process for collider

luminosity measurements. To determine the luminosity, one takes the ratio of the number

of electron-positron pairs observed in the detector and the cross-section for Bhabha scat-

tering computed theoretically. It follows that the accuracy of the luminosity determination

is fully correlated with the precision of the theoretical description of Bhabha scattering.

There are two kinematic regimes relevant for Bhabha scattering. Small angle scatter-

ing, θ . few degrees, was employed at LEP and SLC for the luminosity determination,

while large angle Bhabha scattering, θ & 10 degrees, is used at flavor factories (BABAR,

BELLE, BEPC-BES, CLEO-C, DAPHNE, VEPP-2M) for that purpose [1]. Large an-

gle Bhabha scattering can also be used to determine the luminosity spectrum [2] at the

International Linear Collider (ILC).

Because of the importance of Bhabha scattering, the theoretical description of this

process is quite advanced. In particular, several Monte Carlo event generators have been

developed to describe the Bhabha scattering process [3]; as a rule, these programs correctly

reproduce the O(α) QED corrections and some parts of higher order corrections enhanced

by large logarithms. Further progress in the theoretical description of Bhabha scattering

requires the computation of O(α2) next-to-next-to-leading (NNLO) QED corrections and

the incorporation of those corrections into Monte Carlo event generators. The virtual

two-loop corrections to e+e− → e+e− scattering amplitude were calculated in ref. [14]

in the approximation where lepton masses were set to zero. Unfortunately, this result is

insufficient for the description of Bhabha scattering at flavor factories and the ILC where
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isolated leptons rather than “QED jets” can be observed. Furthermore, all existing event

generators work with massive electrons. To include the NNLO results into these codes, it

is thus necessary to keep the electron mass also in fixed order calculations.

For all practical applications, having the logarithmic electron mass dependence of the

NNLO corrections is sufficient. Corrections suppressed by powers of the electron mass

are negligible, even at the smallest measured scattering angles. When performing the

calculation of the cross section with a nonzero electron mass, one can thus expand the

relevant diagrams in powers of the electron mass. Even so, the evaluation of the two-loop

corrections remains a formidable task. Results for some of the necessary loop integrals

were presented in refs. [4 – 10], but so far only the part of the cross section which involves

closed electron loops has been evaluated [11 – 13].

It is possible to avoid the evaluation of the diagrams in the massive case. Instead, one

can use the massless result of ref. [14] and restore the mass dependence in the logarithmic

approximation. For corrections that do not involve closed fermion loops, to which we will

refer to as “photonic”, this was shown in ref. [15] where the phenomenologically relevant

result for these O(α2) corrections to the large-angle Bhabha scattering was first reported.

However, the approach of ref. [15] is somewhat complicated since it requires to transform

infrared and collinear 1/ǫ poles, inherent to massless amplitudes computed in dimensional

regularization, to ln λ and ln me terms in the massive amplitude where the photon mass λ

regularizes infrared divergences and the electron mass me regularizes collinear divergences.

In this paper we point out that a much simpler procedure for deriving massive am-

plitudes from massless ones exists since the two amplitudes are related by multiplicative

renormalization factors. These renormalization factors can be deduced from the knowledge

of massive and massless electron Dirac form-factors. The massive amplitude constructed

along these lines has its infrared divergences regularized dimensionally and collinear di-

vergences regularized by the electron mass. Beyond its simplicity, the advantage of this

approach is that it can be directly applied to QCD whereas the method of ref. [15] relies on

the photon mass as infrared regulator. In a recent paper, Mitov and Moch have obtained

a similar relation between massless and massive amplitudes [16]. In fact, for photonic cor-

rections our relation reduces to their result. In addition, our method allows us to also treat

contributions involving massive fermion loops.

We apply our method to compute the NNLO QED corrections to large-angle Bhabha

scattering; we include both photonic corrections and contributions from closed lepton loops.

This calculation is a nontrivial application of our method. In addition, it provides an

independent check of the computations of refs. [15, 11 – 13] with which we find complete

agreement.1 We also derive the NNLO contribution from loops with leptons heavier than

the electron, i.e. muons and tau leptons, which was not available in the literature.

The paper is organized as follows. In the next section we present our notation and

discuss the perturbative expansion of the large-angle Bhabha scattering cross-section. In

section 3 we explain the factorization formula considering the electron Dirac form factor

as an example. In section 4 we apply the factorization formula to compute the NNLO

1Note that appendix B of ref. [12] contains a misprint [17].
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QED corrections to Bhabha scattering. We conclude in section 5. Some useful formulas

are collected in the appendix.

2. Notation

Consider the process e+(p1) + e−(p2) → e+(p3) + e−(p4) for energies and scattering angles

such that the absolute values of all kinematic invariants (p1 + p2)
2 = s, (p1 − p3)

2 = t and

(p1 − p4)
2 = u are much larger than the electron mass squared, s, |t|, |u| ≫ m2

e.

We compute the Bhabha scattering cross-section perturbatively in the on-shell scheme

where the fine structure constant α is defined through the photon propagator at zero

momentum transfer. Neglecting corrections suppressed by powers of the electron mass, we

write

dσ

dΩ
=

α2

s

(

1 − x + x2

x

)2 [

1 +
(α

π

)

δ1 +
(α

π

)2
δ2 + O(α3)

]

, (2.1)

where x = (1 − cos θ)/2 and θ is the scattering angle. We take into account electron

and muon contributions to photon vacuum polarization diagrams in the approximation

s ≫ m2
µ ≫ m2

e. For phenomenological applications, the contribution of τ leptons may

be required; it can be obtained from the formulas below with the obvious modification

mµ → mτ provided that the high-energy condition s ≫ m2
τ is valid.

The higher order corrections to the Bhabha scattering cross-section depend logarith-

mically on the mass of the electron. Also, in order to arrive at a physically meaningful

result, we need to allow for soft radiation with the energy of each emitted photon below

some value ωcut ≪ m. The perturbative corrections depend logarithmically on ωcut. The

corrections sensitive to soft and collinear physics are numerically enhanced relative to other

corrections; it is therefore customary to separate out those corrections when presenting re-

sults for perturbative coefficients. The O(α) correction in eq. (2.1) is well-known [18]; in

the limit of small electron mass it can be written as

δ1 =

(

4Lsoft + 3 +
2

3
Nf

)

ln

(

s

m2
e

)

+ δ
(0)
1 , (2.2)

where Lsoft = ln(2ωcut/
√

s). We have introduced a label Nf to distinguish corrections due

to closed lepton loops. In particular, including electron and muon loops corresponds to

Nf = Ne + Nµ where Ni is the number of leptons of the ith flavor. To obtain numerical

results one has to set Ne = 1 and Nµ = 1.

The part of the one-loop correction that is not enhanced by the logarithm of the

electron mass to center-of-mass energy ratio reads

δ
(0)
1 =

[

−4 + 4 ln
x

1 − x

]

Lsoft −
2Nµ

3
ln

m2
µ

m2
e

− 4 − 2π2

3

−2Li2(x) + 2Li2(1 − x) − 10Nf

9
+ f(x). (2.3)
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The function f(x) is defined as

f(x) = (1−x+x2)−2

{(

1

3
− 2

3
x+

9

4
x2 − 13

6
x3+

4

3
x4

)

π2 +

(

3−4x+
9

2
x2− 3

2
x3

)

ln(x)

+

(

3

4
x−x2

4
− 3

4
x3+x4

)

ln2(x) +

[

− 1

2
x− 1

2
x3 +

(

2−4x+
7

2
x2−x3

)

ln(x)

]

ln(1−x)

+

(

−1+
5

2
x− 7

2
x2+

5

2
x3−x4

)

ln2(1−x) + Nf

(

2

3
− x

3

)

(1−x+x2) ln(x)

}

. (2.4)

The second term in the perturbative expansion of the Bhabha scattering cross-section

is enhanced by up to three powers of the logarithm of the electron mass. We write the

NNLO correction as

δ2 = −Nf

9
ln3

(

s

m2
e

)

+ δ
(2)
2 ln2

(

s

m2
e

)

+ δ
(1)
2 ln

(

s

m2
e

)

+δ
(0)
2 , (2.5)

where

δ
(2)
2 = 8L2

soft+

(

12+
8

3
Nf

)

Lsoft+
9

2
+Nf

(

−1

3
ln

x

1 − x
+

55

18

)

+
Nµ

3
ln

m2
µ

m2
e

+
N2

f

3
; (2.6)

δ
(1)
2 =

[

−16+16 ln
x

1 − x

]

L2
soft +

[

−28− 8

3
π2 + 12 ln

x

1 − x
−8Li2(x) + 8Li2(1 − x)

+Nf

(

8

3
ln

x

1 − x
− 64

9

)

+4f(x) − 8Nµ

3
ln

m2
µ

m2
e

]

Lsoft −
93

8
− 5π2

2
+6ζ(3)−6Li2(x)

+6Li2(1 − x) + 3f(x) + Nµ

(

−1

3
ln2 m2

µ

m2
e

+

(

2

3
ln

x

1 − x
− 37

9

)

ln
m2

µ

m2
e

)

(2.7)

−Nf

(

8

3
Li2(x)+

281

27

)

+Nfg(x) + N2
f

(

−10

9
+

(2 − x)

3(1 − x + x2)
ln(x)

)

−2

3
NfNµ ln

m2
µ

m2
e

,

and the function g(x) reads

g(x) = (1 − x + x2)−2

{(

2

3
x4 − 5

4
x2 − 1

12
x3 +

17

12
x − 1

3

)

ln2(x)

+

(

(1 − 2x)

(

2

3
x3 − 1

2
x2 +

2

3

)

ln(1 − x) +
37

9
− 56x

9
+

47x2

6
− 67x3

18
+

10x4

9

)

ln(x)

−
(

2

3
x2− 7

6
x+

2

3

)

(x2−x+1) ln2(1−x)+

(

−10

3
x2+

31

18
x3+

31

18
x− 10

9
− 10

9
x4

)

×

× ln(1−x) +

(

11

12
x2 +

8

9
x4 − 1

9
+

2

9
x − 23

18
x3

)

π2

}

. (2.8)

Except for the muon contributions, the terms δ
(2)
2 and δ

(1)
2 were computed in refs. [19 – 21]

and the term δ
(0)
2 in eq. (2.5) was computed in refs. [15, 11 – 13]. We present the result of

our computation of the term δ
(0)
2 below.
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3. Mass factorization

We begin with the description of the method that we use to compute the NNLO QED

corrections to the Bhabha scattering cross-section. The key to our approach is a factor-

ization formula that relates massless and massive amplitudes for a given process; such

a relationship between massless and massive amplitudes can be expected because of the

well-known fact [22] that in physical gauges collinear divergences factorize into the wave

function renormalization constants.

We will explain the factorization theorem using the Dirac form factor and then apply

it to Bhabha scattering but we stress that the same relation applies to arbitrary scattering

amplitudes in QED and QCD in the limit where all particle masses are much smaller than

typical momentum transfers. The Soft-Collinear Effective Theory (SCET) [23 – 25] is an

appropriate framework to analyze factorization properties of processes in this limit. This

effective field theory is constructed by studying the perturbative expansion in QED or

QCD and identifying those momentum regions in loop integrals that lead to singularities

once the expansion of diagrams in small kinematic variables or masses is performed. These

momentum modes are described by effective theory fields while the remaining contributions

are integrated out and absorbed into the Wilson coefficients of the effective theory opera-

tors. The singularities relevant to our case arise when particles are soft or have momenta

collinear to the external momenta. The effective theory description of the electric current

requires two different collinear fields which interact via soft exchanges. To explain the

structure of the result, we first consider the electron Dirac form factor in the limit where

the electron momenta fulfill Q2 = −(p1 − p2)
2 ≫ p2

1 ∼ p2
2 ∼ m2

e. At leading power in the

effective theory, the vector current Vµ = ψ̄γµψ takes the form

Vµ =

∫

dsdt C̃V (s, t)
[

ξ̄2W2

]

(sn̄2) γµ

[

W †
1 ξ1

]

(tn̄1) + O(Q−1). (3.1)

Here, n1 and n2 are the light-like reference vectors in the directions of p1 and p2, respec-

tively. The conjugate vectors n̄1 and n̄2 point in the opposite directions and fulfill n̄1 ·n1 =

n̄2 · n2 = 2. These reference vectors must be chosen such that n̄1 · p1n̄2 · p2 = Q2 +O(m2
e).

The collinear electron fields ξ1 and ξ2 are multiplied by light-like collinear Wilson lines

Wi(x) = exp



ie

0
∫

−∞

ds n̄i · Ac,i(x + sn̄i)



 . (3.2)

The Fourier transform of the Wilson coefficient

CV (Q2) ≡ CV (n̄1 · p1n̄2 · p2) =

∫

dsdt C̃V (s, t)eisn̄2p2−itn̄1p1 (3.3)

depends only on the hard scale Q2, but is independent of the electron mass. To obtain

CV (Q2), we perform a matching calculation. The simplest way to do the matching is to

use dimensional regularization and to calculate the on-shell form factor in the massless

theory. In this case all loop diagrams in effective theory vanish and the bare Wilson

coefficient CV (Q2) equals the on-shell Dirac form factor F̃ (Q2) of a massless electron.
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The massless on-shell form factor has infrared divergences, which show up as poles in

4−d = 2ǫ. These poles correspond to ultra-violet divergences in the effective theory. Since

the Wilson coefficients are independent of the small electron mass, the difference between

massive and massless amplitudes can only arise from matrix elements of operators in the

effective field theory. Off-shell Green’s functions in the effective theory get contributions

from soft interactions between external legs and collinear interactions in each sector. At

leading power, soft photons have eikonal interactions with collinear fields; only the ni · As

component of the soft photon field interacts with collinear electrons moving in the ith

direction. These interactions can be removed by field redefinitions [24]

ξi(x) = Si(x−)ξ
(0)
i (x) , Aµ

i (x) = Si(x−)A
(0)µ
i S†

i (x−) , (3.4)

where x− = 1
2(n̄i · x)nµ

i and the soft Wilson line reads

Si(x) = exp



ie

0
∫

−∞

ds ni · Ac,i(x + sni)



 . (3.5)

The current operator takes the form

Vµ =

∫

dsdt C̃V (s, t)
[

ξ̄
(0)
2 W

(0)
2

]

(sn̄2) γµ S†
2(0)S1(0)

[

W
(0)†
1 ξ

(0)
1

]

(tn̄1) + O(Q−1). (3.6)

After the field redefinition eq. (3.4), there is no interaction between the different sectors

of the theory. The matrix elements of the current operator factorize into collinear matrix

elements for each direction, called jet-functions, and a soft function, which is given by the

matrix element of the soft Wilson lines. This factorization of Green’s functions into hard-,

jet- and soft functions at large momentum transfers is a well known property of gauge

theories [26 – 28].

For on-shell matrix elements the situation is especially simple because in the massless

case jet and soft functions are trivial since effective theory loop diagrams are scaleless. For

massive electrons, the collinear matrix elements are functions of the lepton masses, while

the soft function also depends on the hard momentum Q. We therefore write

F (Q2, {m2}) = ZJ({m2})S(Q2, {m2})F̃ (Q2) + O(m2/Q2) . (3.7)

The relation between the massive form factor F and the massless form factor F̃ simplifies

when only photonic corrections are considered. In that case higher order corrections to

the soft matrix element in the massive theory are given by scaleless integrals and therefore

vanish. This can be seen diagrammatically before performing the somewhat formal decou-

pling transformation in eq. (3.4). Hence, we conclude that for photonic corrections the soft

function in eq. (3.7) is equal to one to all orders in QED perturbation theory and can be

dropped from the right hand side of eq. (3.7). The relation between massless and massive

form factors obtained in this way coincides with the relation discussed recently in ref. [16].

It is also consistent with the one-loop relation obtained in ref. [30].

However, a non-trivial soft function appears once vacuum polarization diagrams with

massive particles are considered. In that case, it is easy to see that the soft momentum

– 6 –
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contribution in the massive theory is not a scaleless integral and therefore does not vanish.

Moreover, it exhibits non-trivial dependence on the hard scale Q. We write the soft matrix

element S(Q2, {m2}) as

S(Q2, {m2}) = 1 +
∑

i=e,µ

δS(Q2,m2
i ) , (3.8)

where

δS(Q2,m2
i , Ni) = −Ni(4πα0)

2

∫

ddk

(2π)d
p1 · p2

(p1 · k) (p2 · k) k2
iΠ(k2,m2

i ). (3.9)

In eq. (3.9) α0 stands for the bare QED coupling constant. The vacuum polarization

function Π(k2) in eq. (3.9) is defined as

iΠ(k2,m2
i ) =

(−1)

(d − 1)k2

∫

ddl

(2π)d
Tr

[

γα
1

l/ − mi
γα 1

l/ + k/ − mi

]

. (3.10)

The easiest way to compute the soft matrix element is to employ a dispersive representation

for the vacuum polarization function Π(k2). Evaluating the integral in eq. (3.9) in d = 4−2ǫ

dimensions, we obtain

δS(Q2,m2
i , Ni) = Nia

2
0m

−4ǫ
i ln

(

Q2

m2
e

) (

− 1

12ǫ2
+

5

36ǫ
− 7

27
− π2

72
+ O(ǫ)

)

, (3.11)

where a0 = α0/π e−γǫ(4π)ǫ and γ is the Euler constant. Eq. (3.7) provides a relation

between closed lepton loop contributions to massive and massless form factors and allows

a derivation of Ne,µ-dependent O(α2) corrections to Bhabha scattering from the massless

results of ref. [14].

To determine the square of the jet-function ZJ to NNLO in QED, we use eq. (3.7)

and divide the ratio of dimensionally regularized massive and massless form factors by

the soft matrix element eq. (3.9). The expansion of the massive vector form factor in the

limit Q2 ≫ m2
e through O(α2) can be found in refs. [31 – 33].2 The massless result can be

obtained from refs. [34, 35]. We express the jet function through the bare QED coupling

constant α0. We find

ZJ = 1+a0m
−2ǫ
e

[

1

2ǫ2
+

1

4ǫ
+

π2

24
+ 1 + ǫ

(

2 +
π2

48
− ζ(3)

6

)

+ ǫ2

(

4 − ζ(3)

12
+

π4

320
+

π2

12

)]

+a2
0m

−4ǫ
e

[

1

8ǫ4
+

1

ǫ3

(

1

8
− Nf

24

)

+
1

ǫ2

(

17

32
+

π2

48
− Nf

36

)

+
1

ǫ

(

83

64
− π2

24
+

2ζ(3)

3

−Nf

(

209

432
+

5π2

144

)

− Nµ

6
ln

m2
µ

m2
e

)

+
561

128
+

61π2

192
− 11

24
ζ(3) − π2

2
ln(2) − 77π4

2880

2We need the O(ǫ2) terms in the one-loop contribution to the massive form factor which are not provided

in ref. [31]. However, it is simple to compute these terms and the corresponding result is given in appendix

A. Note also that with the normalization adopted in eq. (24) of ref. [31] the MS result for the contribution of

massive quark vacuum polarization to the heavy quark form factor coincides with the result in the on-shell

scheme.

– 7 –



J
H
E
P
0
6
(
2
0
0
7
)
0
8
4

+Nf

(

3379

2592
− 19π2

216
+

ζ(3)

36

)

+ Nµ

(

1

36
ln3 m2

µ

m2
e

+
25

72
ln2 m2

µ

m2
e

+

(

193

216
+

π2

18

)

ln
m2

µ

m2
e

−1241

1296
+

7π2

54
− ζ(3)

3

)]

+ O
(

αǫ3, α2ǫ
)

. (3.12)

Setting Nf = Nµ = 0, we find the agreement with the result of ref. [16]. The indepen-

dence of the jet function ZJ of the hard scale Q2 is an explicit demonstration of the mass

factorization to two-loop order.

Before turning to Bhabha scattering, we want to address a subtlety concerning eq. (3.7).

This relation relies on the assumption that only hard, collinear and soft momentum modes

are relevant in the effective theory computation. However, as was explicitly shown in

ref. [29], this assumption is invalid for some diagrams that contribute to the form factor.

A particular example discussed in ref. [29] is the contribution of so-called ultra-collinear

modes to a two-loop planar vertex diagram. Let us stress that the relevance of these modes

for the full form factor computation would invalidate the factorization formula eq. (3.7)

since this mode induces additional dependence on the hard scale Q that is not associated

with the hard or soft region. It is therefore gratifying to observe that the ultra-collinear

modes discussed in ref. [29] are not relevant for the form factor since their contributions

cancel out. For example, at the two-loop level, the ultra-collinear contribution to a planar

vertex diagram cancels exactly against a similar contribution to the non-planar vertex

diagram making the full form factor independent of it.

4. Bhabha scattering

We can now apply the factorization formula, established for the electron Dirac form factor

in the previous section, to Bhabha scattering. To get the scattering amplitude M in

which the electron mass is used as a regulator of the collinear singularities, we only need

to multiply the massless amplitude M̃ by the square root of the jet function Z
1/2
J for

each electron and positron leg and by the product of soft functions that account for soft

exchanges in s, t and u channels. To obtain the soft matrix element, we may use eq. (3.11).

While eq. (3.11) is relevant for the space-like electron form factor, we need to generalize it

to describe soft exchanges in the s- and u-channel. We write

M({pi}, {m2}) = Z2
J({m2})M̃({pi})S(s, t, u) + O(m2/Q2), (4.1)

where the soft function S(s, t, u) is given by

S(s, t, u) =



1 + 2
∑

Q2

∑

i=e,µ

δS(Q2,m2
i , λQ2Ni)



 (4.2)

and the sum goes over Q2 = −s,−t,−u with λs = λt = 1 and λu = −1. The change

Ni → −Ni shown in eq. (4.2) accounts for the required change in the overall sign in δS in

the u-channel.
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We can now use the two-loop result for the Bhabha scattering amplitude computed

in the massless limit [14] and employ eqs. (3.12), (4.1) and (4.2) to obtain the scattering

amplitude in which collinear divergences are regularized by the electron mass and infrared

divergences are regularized dimensionally. With the massive scattering amplitude at hand,

the computation of the two-loop QED corrections to the large-angle Bhabha scattering

cross-section becomes straightforward; what we need in addition is the cross-sections for

the inelastic processes e+e− → e+e− + n γ, with n = 1 and n = 2, in the soft photon

approximation. We write the perturbative expansion of the Bhabha scattering cross-section

as

dσ

dΩ
= exp

(α

π
Fsoft

)

Z4
J |S|2 ᾱ2

s

(

dσ0 +
ᾱ

π
dσv

1 +
( ᾱ

π

)2
(

dσv
1×1 + dσv

2

)

+ O(α3)

)

. (4.3)

In this formula, ZJ is the square of the jet-function given in eq. (3.12); Fsoft describes

soft photon radiation which, in case of QED, is known to factorize and exponentiate. Up

to an overall factor ᾱ2/s the quantity dσ0 is the tree level cross section in d-dimensions

and dσv
1 denotes the one-loop virtual contributions. At two loops, there are two types of

virtual corrections: the quantity dσv
2 contains the interference of the two-loop amplitude

with the tree level amplitude, while dσv
1×1 describes the interference of one-loop amplitude

with itself. These contributions are to be computed with massless leptons. The massive

result for the virtual corrections is then obtained by multiplying the massless result with

Z4
J |S2|. The massless cross-sections dσv

1 and dσv
2 can be found in ref. [14], while dσv

1×1 can

be obtained from ref. [36], as we explain below. Note also that results of refs. [14, 36] are

written through the QED coupling constant ᾱ renormalized in the MS scheme. It is for

this reason that ᾱ appears in eq. (4.3).

In ref. [36] the interference of the one-loop amplitude with itself was obtained for

quark-quark scattering in QCD. To extract the QED piece relevant for Bhabha scattering

from these results, we need to analyze the color algebra; such an analysis shows that dσv
1×1

can be obtained from the computation of ref. [36] by taking the N → 0 limit of the QCD

result, where N is the number of colors, and subtracting from it suitably weighted products

of the one-loop Bhabha scattering cross-section dσv
1 and the electron Dirac form factor in

the massless approximation. Note that the divergent terms in dσv
1×1 can be obtained from

Catani’s decomposition [37] of the one-loop scattering amplitude for e+e− → e+e− and

the O(α) correction to the Bhabha scattering cross-section in dimensional regularization

derived in ref. [14]. For this reason we only present the finite part of dσv
1×1; it is given in

the appendix B.

Finally, the description of soft radiation in eq. (4.3) is encapsulated in the function

Fsoft; we require this function for massive electron-positron scattering. Since Fsoft describes

the emission of a real photon, it is simplest to evaluate it in the on-shell scheme. In doing

so, the effects of vacuum polarization contributions are absorbed into the coupling constant

and do not need to be evaluated explicitly. The function Fsoft is determined by the integral

Fsoft = −4π2

∫

k0≤ωcut

ddk

(2π)d−12k0
JµJµ, (4.4)
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where the soft current Jµ is given by

Jµ =
∑

i

qiλi
pµ

i

pi · k
, (4.5)

qi is the charge of the particle i in units of the positron charge and λ = ±1 for the

incoming(outgoing) particle, respectively. Writing

JµJµ =
∑

i6=j

pi · pj

(pi · k)(pj · k)
qiqjλiλj +

∑

i

m2
e

(pi · k)2
, (4.6)

we observe that two types of integrals are required for the evaluation of Fsoft. We give

expressions for these integrals below neglecting all the terms that are suppressed by powers

of the electron mass.

The first integral depends on the relative momenta of two charged particles. We find

Iij =

∫

k0≤ωcut

dd−1k

(2π)d−12k0

pi · pj

(pi · k)(pj · k)
(4.7)

= −Nǫ
(2ωcut)

−2ǫ

2ǫ

[

ln
1

1 + xij
− Lm + ǫ

(

1

2
L2

m + Li2 (−xij) +
π2

3

)

+ǫ2

(

−L3
m

6
− π2

3
Lm + 2ζ(3) + Li3 (−xij)

)]

,

where xij = (1 + cos θij)/(1 − cos θij), θij is the relative angle between the three-momenta

of the particles i and j and the normalization factor Nǫ reads

Nǫ =
Γ(1 − ǫ)

4π2(4π)−ǫΓ(1 − 2ǫ)
. (4.8)

Also, we introduced Lm = ln(m2
e/s) to denote the collinear logarithm.The second integral

required to describe the soft radiation reads

Is =

∫

k0≤ωcut

dd−1k

(2π)d−12k0

m2
e

(pi · k)2
= −Nǫ

(2ωcut)
−2ǫ

2ǫ

[

1 − ǫ ln
m2

e

s
+

ǫ2

2
ln2 m2

e

s

]

, (4.9)

where we used the on-shell condition p2
i = m2

e.

We now have everything in place to calculate the NNLO QED corrections to Bhabha

scattering. We substitute all the necessary ingredients into eq. (4.3). To combine the

different pieces, it is simplest to first express the on-shell coupling constant appearing in the

soft radiation exponential in eq. (4.3) through the MS coupling constant. In d-dimensions,

the relevant relation reads

α = ᾱ(µ)µ2ǫ







1 − 2ᾱ(µ)

3π

∑

f=e,µ

[

ln
µ

mf
+ ǫ

(

ln2 µ

mf
+

π2

24

)

+ O(ǫ2)

]







. (4.10)
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After adding the real and virtual parts, all infrared divergences cancel and we can use the

four-dimensional relation between the MS and the on-shell fine structure constants

ᾱ(µ) = α

{

1 +
(α

π

)

(

2Nf

3
ln

µ

me
− 2Nµ

3
ln

mµ

me

)

(4.11)

+
(α

π

)2
[

4N2
f

9
ln2 µ

me
+

Nf

2
ln

µ

me
+

15Nf

16

−8NfNµ

9
ln

µ

me
ln

mµ

me
− Nµ

2
ln

mµ

me
+

4N2
µ

9
ln2 mµ

me

]}

,

to obtain the expansion of the Bhabha scattering cross section through NNLO in terms of

the on-shell QED coupling constant. Upon doing so, we reproduce the formulas for radiative

corrections to Bhabha scattering shown in section 2 and obtain an explicit expression for

δ
(0)
2 , which is presented below. We write δ

(0)
2 in the following way

δ
(0)
2 = δ

(0,1)
2 + Nfδ

(0,2)
2 + Nµδ

(0,3)
2 + N2

f δ
(0,4)
2 + NfNµδ

(0,5)
2 +

N2
µ

3
ln2 m2

µ

m2
e

, (4.12)

where we separate photonic corrections and the corrections caused by closed lepton loops.

We now present the results for these terms separately. For the photonic corrections we find

δ
(0,1)
2 = 8L2

soft+(1−x+x2)−2Lsoft

(

−x2(4x2+5−6x)π2−x(3−3x2−x+4x3) ln2(x)

+
[

2x2(4x2+5−6x) ln(1−x)−12+16x−18x2+6x3
]

ln(x)+2x(x2+1) ln(1−x)

+2(x2−x+1)(2x2−3x+2) ln2(1−x)+16(x2−x+1)2 (1+Li2(x)))
)

+8Li2(x)2+
27

2
−2π2 ln(2)+(1−x+x2)−2∆

(0,1)
2 , (4.13)

where Lsoft = (1 − ln(x/(1 − x)) Lsoft, and

∆
(0,1)
2 = +

(

31

480
x4− 8

45
+

37

90
x2− 7

72
x− 47

180
x3

)

π4+

[

1

48
x(35x3−2x2+20x+24) ln2(x)

+

((

−35

24
x4+

8

3
x3− 11

12
x2− 5

2
x+

8

3

)

ln(1−x)− 15

8
x3+

11

12
x2+

23

12
x− 1

2

)

ln(x)

+

(

− 5

48
x4+

1

12
x3− 7

3
x2+3x− 49

24

)

ln2(1−x)+
1

24
x(43x2−74x+24) ln(1−x)

−3

4
x2+

17

8
+

83

24
x3− 19

8
x4− 61

24
x

]

π2+
1

96
(43x3−8x2+5x+14)x ln4(x)

+

((

−43

24
x4+

7

6
x3+

1

2
x2− 17

12
x+

2

3

)

ln(1−x)− 1

24
(16x2+30x−67)x

)

ln3(x)

+

((

19

16
x4− 29

8
x3+

7

8
x2+

39

8
x− 9

2

)

ln2(1−x)+
1

8
(9x2−2x−24)x ln(1−x)

−9

2
x4+

29

8
x3+

17

8
x2− 43

8
x+

9

2

)

ln2(x)+

((

−1

8
x4+

1

3
x3+

11

3
x2− 37

6
x+4

)

ln3(1−x)

– 11 –
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+

(

13

8
x3− 11

2
x2+

27

4
x−3

)

ln2(1−x)+
1

4
x(51x−22+36x3−64x2) ln(1−x)

+(12−12x+8x2−x3)ζ(3)− 279

16
x2+

231

16
x+

93

16
x3− 93

8

)

ln(x)

+

(

1

32
− 3

4
x+

71

48
x2− 29

24
x3+

9

32
x4

)

ln4(1−x)+
1

24
(9x2+4x+9)x ln3(1−x)

+

(

45

4
x2−6x+

7

2
x4−6x3+

7

2

)

ln2(1−x)

+
(

(−4x3−6+6x−x2)ζ(3)+3x(x2+1)
)

ln(1−x)

+

(

−9+
43

2
x−34x2+22x3−9x4

)

ζ(3)+

[(

−17

4
x−3x4+2+

9

4
x2+

7

4
x3

)

ln2(x)

+

((

−6+7x+
15

2
x2+8x4−14x3

)

ln(1−x)++
27

2
x−13x2+4x3−12

)

ln(x)

+
1

2

(

x2−4x+7
) (

2x2−3x+2
)

ln2(1−x)+
1

2
x(5+3x2) ln(1−x)

−32x−32x3+16x4+16+48x2+π2

(

31

6
x3+

5

3
(1−x)− 15

4
x2− 8

3
x4

)]

Li2(x)

+
(

(−6+5x+3x2−5x3)ln(x)+2(1−x2)(3x2−5x+3) ln(1−x)+
x

2
(1−x2)

)

Li3(1−x)

+
(

(−4−x+x2+2x3−2x4) ln(x)+(x2+6+4x3−6x) ln(1−x)+
x

2
(4x2−10x+5)

)

×

×Li3(x)+

(

−6+4x+
9

2
x2−7x3

)

Li4

(

x

x−1

)

+
x

2

(

12x3+14−9x−8x2
)

Li4(1−x)

−1

2
(1−x2)(4x−1)(x−4)Li4(x). (4.14)

The contribution of diagrams with a single electron or muon vacuum polarization

insertion is described by δ
(0,2)
2 , δ

(0,3)
2 . We obtain

δ
(0,2)
2 = Lsoft

(

40

9
+

4(x − 2)

3(1 − x + x2)
ln(x)

)

+
40

9
Li2(x)+

1967

108
+(1−x+x2)−2∆

(0,2)
2 , (4.15)

where

∆
(0,2)
2 =

(

2

3
x2−x+

4

3

)

(x2−x+1)Li3(x)+
2

3
(1−x2)(x2−x+1)Li3(1−x)

+

(

−(x2−x+1)

(

2

3
x2− 7

3
x+4

)

ln(x)+
2

3
(x2−x+1)(1−x2) ln(1−x)

)

Li2(x)

+

(

− 1

18
x3− 11

18
x2+

1

9
x4+

31

36
x− 1

9

)

ln3(x)+

((

−4

3
x2− 1

3
x4+

1

3
x− 1

3
+x3

)

ln(1−x)

−10

9
x4+

14

3
x2− 4

9
x3− 46

9
x+

55

18

)

ln2(x)+

(

−x

(

7

12
x− 1

3
+

x3

3
−x2

2

)

ln2(1−x)

+

(

1

2
x2− 10

9
− 25

9
x3+

37

18
x+

20

9
x4

)

ln(1−x)+

(

− 1

36
x2+

1

3
x4− 1

9
+

2

3
x− 5

9
x3

)

π2

−337

18
x2+

449

54
x3− 281

27
+

418

27
x− 56

27
x4

)

ln(x)− 1

9
(x2−x+1)(1−x)2 ln3(1−x)
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+

(

10

9
+

9

2
x2+

10

9
x4− 29

9
x− 29

9
x3

)

ln2(1−x)+

((

−16

9
x2− 2

9
x4− 4

9
+

11

9
x+x3

)

π2

+
56

9
x2− 161

54
x3+

56

27
− 161

54
x+

56

27
x4

)

ln(1−x)+

(

47

12
x3− 7

3
x4− 1

6
+

11

12
x− 71

18
x2

)

π2

+(x2−x+1)

(

2x2− 5x

3
+

4

3

)

ζ(3), (4.16)

and

δ
(0,3)
2 =

8

3
ln

m2
µ

m2
e

Lsoft+
1

9
ln3 m2

µ

m2
e

+

(

19

18
− 1

3
ln

x

1−x

)

ln2 m2
µ

m2
e

+

(

8

3
Li2(x)+

191

27
+(1−x+x2)−2∆

(0,3)
2

)

ln
m2

µ

m2
e

+
14π2

27
− 4

3
ζ(3)− 1241

324
, (4.17)

where

∆
(0,3)
2 = (1−x+x2)

(

2

3
x2− 7

6
x+

2

3

)

ln2(1−x)+

(

(2x−1)

(

2

3
x3− 1

2
x2+

2

3

)

ln(x) (4.18)

+
10

9
+

10

9
x4− 31

18
x− 31

18
x3+

10

3
x2

)

ln(1−x)+

(

1

12
x3− 2

3
x4− 17

12
x+

5

4
x2+

1

3

)

ln2(x)

+

(

−37

9
− 10

9
x4+

56

9
x+

67

18
x3− 47

6
x2

)

ln(x)+

(

23

18
x3− 8

9
x4+

1

9
− 11

12
x2− 2

9
x

)

π2.

The corrections with two insertions of the closed lepton loop read

δ
(0,4)
2 =

25

27
+(1−x+x2)−2∆

(0,4)
2 , (4.19)

where

∆
(0,4)
2 =

(

1

3
−x3

9
+

7x2

18
− 4x

9

)

ln2(x)− 5

9
(x2−x+1)(2−x) ln(x)

+x

(

1

9
− 5x

18
−x3

9
+

2x2

9

)

π2. (4.20)

and

δ
(0,5)
2 =

(

10

9
+

(x−2)

3(1−x+x2)
ln x

)

ln
m2

µ

m2
e

. (4.21)

Because the above expressions are rather lengthy, we have included them in electronic form

in our submission to the arXiv.

5. Conclusion

We presented a novel relation between massive and massless scattering amplitudes in QED

valid in the limit when all kinematic invariants are large compared to masses of particles

that participate in the scattering process; for quenched QED, our result agrees with a

similar relation between massive and massless scattering amplitudes discussed recently

in [16]. We used this relation to derive the NNLO QED corrections for Bhabha scattering

– 13 –



J
H
E
P
0
6
(
2
0
0
7
)
0
8
4

confirming earlier results on photonic and electron loop corrections of ref. [15, 11 – 13]. We

also obtained NNLO contributions to Bhabha scattering due to muon and tau vacuum

polarization loops that were not available in the literature.

In variance with the approach discussed in ref. [15], our method is directly applicable to

QCD. A potentially interesting application is the computation of the NNLO QCD virtual

corrections to heavy (e.g. b) quark production at moderate to large momentum transfers

at the Tevatron and the LHC using the two-loop matrix elements for the gg → qq̄ process

computed in ref. [38] for massless quarks.
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Note added. While we were finalizing our paper, ref. [39] appeared in which the muon-

loop contribution to Bhabha scattering was evaluated. After the authors of ref. [39] cor-

rected one of the master integrals their result agrees with ours.

A. The one-loop massive Dirac form factor

The one-loop massive Dirac space-like form factor, in the limit Q2 ≫ m2
e, reads

F1 = 1+
ᾱ(me)

2π

Γ(1+ǫ)

(4π)−ǫ

[

L−1

ǫ
−L2

2
+

3L

2
−2+

π2

6
+ǫ

(

L3

6
− 3L2

4
+

(

4−π2

6

)

L+2ζ(3)

+
π2

4
−4

)

+ǫ2

(

−L4

24
+

L3

4
+

(

π2

12
−2

)

L2+

(

8−π2

4
−2ζ(3)

)

L

+3ζ(3)+
2π2

3
−8+

π4

40

)]

, (A.1)

where L = ln(Q2/m2
e) and ᾱ(m) is the MS fine structure constant evaluated at the scale

m.

B. NNLO results

Here, we give the finite part of the O(α2) correction to the cross-section due to the inter-

ference of the photonic one-loop amplitude with itself. The divergent part can be obtained

using Catani’s results [37].

s2ǫdσv
1×1|finite =

(8x4−13x3+13x2−7x+4)

2x2
Li4

(

x

x−1

)

−(8−13x+13x2−7x3+4x4)

2x2
Li4(1−x)− (1−x2)(2x2−3x+2)

x2
Li4(x)
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+

{

(−x2−9x3+8x4+9x−4)

2x2
ln(x)+

(1−x2)(2x2−3x+2)

x2
ln(1−x)

+
3(1−x2)(2x2−3x+2)

2x2

}

Li3(1−x)+

{

−(13x2−7x3+4x4−13x+8)

2x2
ln(x)

+
(4−3x−x2+3x3)

2x2
ln(1−x)+

(12x4−9x3+24−27x+26x2)

4x2

}

Li3(x)

+

{

3(13x2−7x3+4x4−13x+8)

4x2
ln2(x)+

(

(−13x2+x3+19x−12)

2x2
ln(1−x)

−(12x4−9x3+24−27x+26x2)

4x2

)

ln(x)+
(1−x2)(2x2−3x+2)

2x2
ln2(1−x)

+
3(1−x2)(2x2−3x+2)

2x2
ln(1−x)− (13x2−7x+4−13x3+8x4)π2

4x2

}

Li2(x)

−(45x4+26x3−241x2+230x−64)

96x2
ln4(x)+

(

(45x4−38x3−8x2+28x+16)

24x2
ln(1−x)

+
(12x4+15x3−93x2+169x−96)

24x2

)

ln3(x)+

(

−(12x4−16x3+13x2+27x−24)

8x2
ln(1−x)

+
(11x4−10x3−38x2+62x−40)

16x2
ln2(1−x)+

(19x4+14x3+70x2−100x+80)π2

48x2

−(154x3−421x2+460x−328)

16x2

)

ln2(x)+

[

−(27x4−30x3−16x2+54x−32)

24x2
ln3(1−x)

−(12x4−7x3−29x2+42x−24)

8x2
ln2(1−x)+

(

−(35x4+2x3−82x2+86x−48)π2

24x2

+
(178x−155x2+44x3−128)

8x2

)

ln(1−x)+
(12x4−100x3+74x2−11x+24)π2

24x2

+
(56x4+165x2−103x3−121x+68)

6x2
ζ(3)− (599x2−582x−302x3+448+128x4)

8x2

]

ln(x)

+
(3x4+14x3−18x2+26x−5)

96x2
ln(1−x)4− (14x2+4x4−9x3−9x+4)

8x2
ln3(1−x)

+

(

−(5x4−42x3+92x2−78x+26)

48x2
π2− (−23x+21+21x2)

8x

)

ln2(1−x)

+

(

(23x3−137x2+134x−60)

24x2
π2− (56x4+165x2−103x3−121x+68)

6x2
ζ(3)

+
(115x2−76x−76x3+64+64x4)

4x2

)

ln(1−x)+
(−260+742x−724x2+34x3+257x4)

1440x2
π4

−(229x2−200x3+82x4−98x+82)

48x2
π2− (−295x−241x3+386x2+168x4+204)

12x2
ζ(3)

+
(−464x3+288x4+599x2+288−464x)

4x2
. (B.1)

References

[1] C.M. Carloni Calame, C. Lunardini, G. Montagna, O. Nicrosini and F. Piccinini, Large-angle

Bhabha scattering and luminosity at flavour factories, Nucl. Phys. B 584 (2000) 459

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB584%2C459


J
H
E
P
0
6
(
2
0
0
7
)
0
8
4

[hep-ph/0003268].

[2] N. Toomi, J. Fujimoto, S. Kawabata, Y. Kurihara and T. Watanabe, Luminosity spectrum

measurement in future e+e− linear colliders using large-angle Bhabha events, Phys. Lett. B

429 (1998) 162.

[3] For an inventory, see S. Jadach et al., Event generators for Bhabha scattering in Physics at

LEP2 ;

G. Altarelli, T. Sjostrand, F. Zwirner (editors), CERN report 96-01, CERN, Geneva, (1996).

[4] V.A. Smirnov, Analytical result for dimensionally regularized massive on-shell planar double

box, Phys. Lett. B 524 (2002) 129 [hep-ph/0111160].

[5] R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form factors at the

2-loop level, Nucl. Phys. B 661 (2003) 289 [hep-ph/0301170].

[6] A.I. Davydychev and M.Y. Kalmykov, Massive Feynman diagrams and inverse binomial

sums, Nucl. Phys. B 699 (2004) 3 [hep-th/0303162].

[7] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J.J. van der Bij, Planar box diagram

for the (N(F ) = 1) 2-loop QED virtual corrections to Bhabha scattering, Nucl. Phys. B 681

(2004) 261 [Erratum ibid. 702 (2004) 364] [hep-ph/0310333].

[8] G. Heinrich and V.A. Smirnov, Analytical evaluation of dimensionally regularized massive

on-shell double boxes, Phys. Lett. B 598 (2004) 55 [hep-ph/0406053].

[9] M. Czakon, J. Gluza and T. Riemann, Master integrals for massive two-loop Bhabha

scattering in QED, Phys. Rev. D 71 (2005) 073009 [hep-ph/0412164].

[10] M. Czakon, J. Gluza and T. Riemann, The planar four-point master integrals for massive

two-loop Bhabha scattering, Nucl. Phys. B 751 (2006) 1 [hep-ph/0604101].

[11] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J.J. van der Bij, Two-loop NF = 1

QED Bhabha scattering differential cross section, Nucl. Phys. B 701 (2004) 121

[hep-ph/0405275].

[12] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J.J. van der Bij, Two-loop NF = 1

QED Bhabha scattering: soft emission and numerical evaluation of the differential

cross-section, Nucl. Phys. B 716 (2005) 280 [hep-ph/0411321].

[13] R. Bonciani and A. Ferroglia, Two-loop Bhabha scattering in QED, Phys. Rev. D 72 (2005)

056004 [hep-ph/0507047].

[14] Z. Bern, L.J. Dixon and A. Ghinculov, Two-loop correction to Bhabha scattering, Phys. Rev.

D 63 (2001) 053007 [hep-ph/0010075].

[15] A.A. Penin, Two-loop corrections to Bhabha scattering, Phys. Rev. Lett. 95 (2005) 010408

[hep-ph/0501120]; Two-loop photonic corrections to massive Bhabha scattering, Nucl. Phys.

B 734 (2006) 185 [hep-ph/0508127].

[16] A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, hep-ph/0612149.

[17] R. Bonciani and A. Ferroglia, private communication.

[18] F.A. Berends and R. Kleiss, Distributions in the process e+e− → e+e− (γ), Nucl. Phys. B

228 (1983) 537;

M. Caffo, R. Gatto and E. Remiddi, Hard collinear photons, high-energy radiative corrections

to Bhabha scattering, Nucl. Phys. B 252 (1985) 378.

– 16 –

http://arxiv.org/abs/hep-ph/0003268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB429%2C162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB429%2C162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB524%2C129
http://arxiv.org/abs/hep-ph/0111160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB661%2C289
http://arxiv.org/abs/hep-ph/0301170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB699%2C3
http://arxiv.org/abs/hep-th/0303162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB681%2C261
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB681%2C261
http://arxiv.org/abs/hep-ph/0310333
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB598%2C55
http://arxiv.org/abs/hep-ph/0406053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C073009
http://arxiv.org/abs/hep-ph/0412164
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB751%2C1
http://arxiv.org/abs/hep-ph/0604101
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB701%2C121
http://arxiv.org/abs/hep-ph/0405275
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB716%2C280
http://arxiv.org/abs/hep-ph/0411321
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C056004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C056004
http://arxiv.org/abs/hep-ph/0507047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C053007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C053007
http://arxiv.org/abs/hep-ph/0010075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C010408
http://arxiv.org/abs/hep-ph/0501120
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB734%2C185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB734%2C185
http://arxiv.org/abs/hep-ph/0508127
http://arxiv.org/abs/hep-ph/0612149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB228%2C537
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB228%2C537
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB252%2C378


J
H
E
P
0
6
(
2
0
0
7
)
0
8
4

[19] A.B. Arbuzov, E.A. Kuraev and B.G. Shaikhatdenov, Second order contributions to the

elastic large-angle Bhabha scattering cross-section. I: all except 2-loop box diagrams, Mod.

Phys. Lett. A 13 (1998) 2305 [hep-ph/9806215].

[20] E.W.N. Glover, J.B. Tausk and J.J. Van der Bij, Second order contributions to elastic

large-angle Bhabha scattering, Phys. Lett. B 516 (2001) 33 [hep-ph/0106052].

[21] A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov and L. Trentadue, Virtual and soft real pair

production in large angle Bhabha scattering, Phys. Atom. Nucl. 60 (1997) 591.

[22] J. Frenkel and J.C. Taylor, Exponentiation of leading infrared divergences in massless

Yang-Mills theories, Nucl. Phys. B 116 (1976) 185.

[23] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear

and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336].

[24] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-collinear factorization in effective field theory,

Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045].

[25] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft-collinear effective theory and

heavy-to-light currents beyond leading power, Nucl. Phys. B 643 (2002) 431

[hep-ph/0206152].

[26] R. Akhoury, Mass divergences of wide angle scattering amplitudes, Phys. Rev. D 19 (1979)

1250.

[27] G. Sterman, Mass divergences in annihilation processes. 1. Origin and nature of divergences

in cut vacuum polarization diagrams, Phys. Rev. D 17 (1978) 2773.

[28] A. Sen, Asymptotic behavior of the wide angle on-shell quark scattering amplitudes in

nonabelian gauge theories, Phys. Rev. D 28 (1983) 860.

[29] V.A. Smirnov, Problems of the strategy of regions, Phys. Lett. B 465 (1999) 226

[hep-ph/9907471].
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